Focused ion beam milling of microchannels in lithium niobate.

نویسندگان

  • Manoj Sridhar
  • Devendra K Maurya
  • James R Friend
  • Leslie Y Yeo
چکیده

We present experimental and simulation results for focused ion beam (FIB) milling of microchannels in lithium niobate in this paper. We investigate two different cuts of lithium niobate, Y- and Z-cuts, and observe that the experimental material removal rate in the FIB for both Y-cut and Z-cut samples was 0.3 μm(3)/nC, roughly two times greater than the material removal rate previously reported in the literature but in good agreement with the value we obtain from stopping and range of ions in matter (SRIM) simulations. Further, we investigate the FIB milling rate and resultant cross-sectional profile of microchannels at various ion beam currents and find that the milling rate decreases as a function of ion dose and correspondingly, the cross-sectional profiles change from rectangular to V-shaped. This indicates that material redeposition plays an important role at high ion dose or equivalently, high aspect ratio. We find that the experimental material removal rate decreases as a function of aspect ratio of the milled structures, in good agreement with our simulation results at low aspect ratio and in good agreement with the material removal rates previously reported in the literature at high aspect ratios. Our results show that it is indeed easier than previously assumed to fabricate nanochannels with low aspect ratio directly on lithium niobate using the FIB milling technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photonic crystal structures with ultrahigh aspect ratio in lithium niobate fabricated by focused ion beam milling

Lithium niobate LiNbO3, LN is an important material which is widely applied in fabricating photonic and acoustic devices. However, it is difficult to either wet etch or dry etch LN due to the material’s properties. Here, the authors report novel pattern fabrication based on LN using focused ion beam FIB milling. When an array of small holes is etched, a severe tapering problem is observed as is...

متن کامل

Suspended slab and photonic crystal waveguides in lithium niobate

Suspended waveguides have been widely applied to silicon-on-insulator structures because they are easily fabricated with processing techniques similar to those of integrated circuit design. However, it is difficult to fabricate such structures in lithium niobate, which is also a very important material for optoelectronics. One main challenge is the difficulty of etching lithium niobate. In this...

متن کامل

Conicity and depth effects on the optical transmission of lithium liobate photonic crystals patterned by focused ion beam

We report on novel focused ion beam fabrication techniques that can greatly improve the optical performance of photonic crystal structures. The finite depth and conicity effects of holes and trenches in Lithium Niobate (LN) photonic crystals have been theoretically analyzed, showing that the conicity causes refraction into the bulk sample, resulting in high transmission loss and no useful spect...

متن کامل

High aspect ratio LiNbO3 photonic crystals Toward 3D LiNbO3 micro and nano structures

We report easy to implement techniques for the fabrication of high aspect ratio LiNbO3 photonic crystals. The methods rely on optical grade dicing followed by focused ion beam (FIB) milling. A 2D photonic crystal with an extinction ratio of -14dB is demonstrated. We show how the techniques can be combined for the development of 3D photonic crystals. LiNbO3, ridge waveguides; photonic crystals,

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomicrofluidics

دوره 6 1  شماره 

صفحات  -

تاریخ انتشار 2012